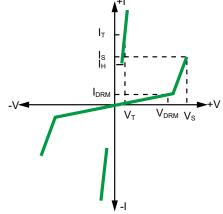


Description


Prisemi POVxxxxSB (SMB) protects central office accesses and customer premise equipments against overvoltage on communication line. Such as CCD and DVR vedio line, modems, line cards, fax machines, and other CPE. The devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Feature

Compared to surge suppression using other technologies, POVxxxxSB devices offer absolute surge protection regardless of the surge current available and the rate of applied voltage (dv/dt).

- Cannot be damaged by voltage
- Eliminate hysteresis and heat dissipation typically found with clamping devices
- Eliminate voltage overshoot caused by fast-rising transients
- Are non-degenerative
- Will not fatigue
- Have low capacitance, making them ideal for high-speed transmission equipment

Electrical Parameters

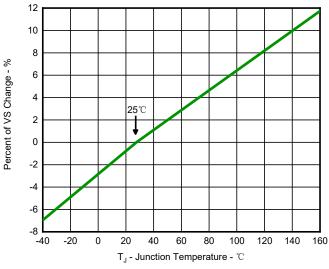
	I _{DRM} @ V _{DRM}		Vs@ls		V _{T @} I _T		lн	С
Part Number	μΑ	V	V	mA	V	Α	mA	pF
Number	Max	Min	Max	Max	Max	Max	Min	Max
POV0080SB	5	6	25	800	4	2.2	20	80
POV0150SB	5	14	20	800	4	2.2	40	80
POV0220SB	5	18	30	800	4	2.2	40	80
POV0300SB	5	25	40	800	4	2.2	40	80
POV0640SB	5	58	77	800	4	2.2	100	80
POV0720SB	5	65	88	800	4	2.2	100	75
POV0900SB	5	75	98	800	4	2.2	100	70
POV1100SB	5	90	130	800	4	2.2	100	70
POV1300SB	5	120	160	800	4	2.2	100	70
POV1500SB	5	140	180	800	4	2.2	100	70
POV1800SB	5	170	220	800	4	2.2	100	70
POV2000SB	5	180	220	800	4	2.2	100	70
POV2300SB	5	190	260	800	4	2.2	100	70
POV2600SB	5	220	300	800	4	2.2	100	70
POV3100SB	5	275	350	800	4	2.2	100	60
POV3500SB	5	320	400	800	4	2.2	100	60

Notes: ALL measurements are made at an ambient temperature of 25°C.lpp applies to -40°C through +85°C temperature range.

 V_{DRM} is measured at I_{DRM} .

 V_{S} is measured at 100V/ μs

Off-state capacitance is measured at 1MHz with a 2V bias .


Surge Ratings

Series	I _{PP} 2x10 μs Amps	I _{PP} 8x20 µs Amps	I _{PP} 10x160 µs Amps	I _{PP} 10x560 µs Amps	I _{PP} 10x1000 μs Amps	I _{ТSМ} 60 Hz Amps	di/dt Amps/µs
В	250	250	150	100	80	30	500

Thermal Considerations

Package SMB	Symbol	Parameter	Value	Unit
	TJ	Operating Junction Temperature	- 40 to +150	°C
	Ts	Storage Temperature Range	- 65 to +150	°C
	$R_{\theta JA}$	Thermal Resistance: Junction to Ambient	90	°C/W

Typical Characteristics

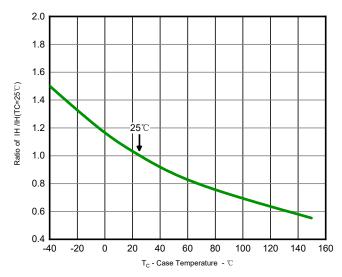


Fig 1. Normalized VS Change vs. Junction Temperature

Fig 2. Normalized DC Holding Current versus Case Temperature

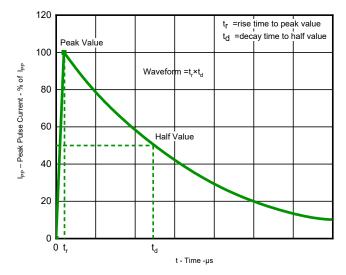
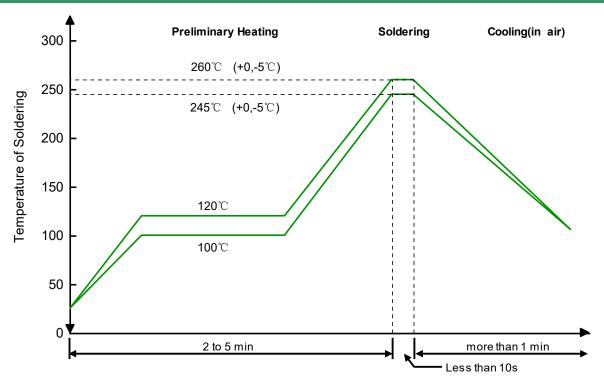
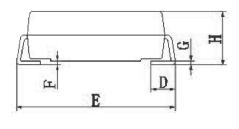
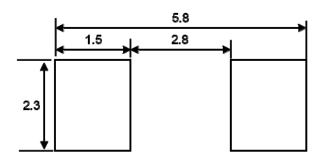




Fig $3.t_r \times t_d$ Pulse Wave-form


Solder Reflow Recommendation

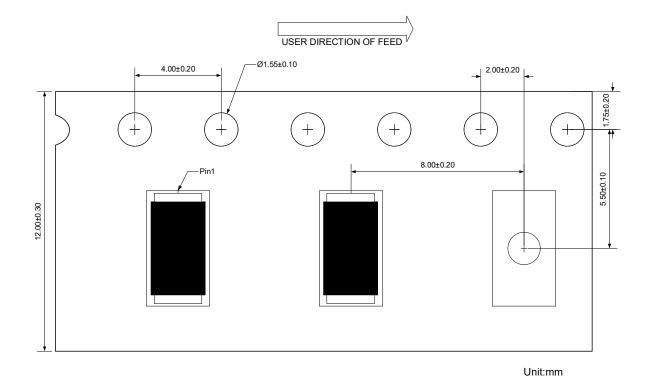


Remark: Pb free for 260°C; Pb for 245°C.

Product Dimension(SMB)

Dim	Millim	neters	Inches		
ווווט	MIN	MAX	MIN	MAX	
Α	4.22	4.70	0.166	0.185	
В	3.40	3.94	0.134	0.155	
С	1.90	2.10	0.075	0.083	
D	0.90	1.42	0.035	0.056	
Е	5.21	5.59	0.205	0.220	
F	0.00	0.23	0.000	0.009	
G	0.15	0.25	0.006	0.010	
Н	1.95	2.60	0.077	0.102	

Unit: mm


Suggested PCB Layout

Ordering information

Package	Reel	Shipping
SMB	13"	3000 / Tape & Reel

Load with information

Rev.06.2 4 www.prisemi.com

IMPORTANT NOTICE

 and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi) ,Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.