

Feature

- For surface mounted applications
- Low profile package
- Glass Passivated Chip Juntion
- > Easy to pick and place
- ➤ Lead free in comply with EU RoHS 2011/65/EU directives

Mechanical Characteristics

Case: SMA

> Terminals: Solderable per MIL-STD-750, Method 2026

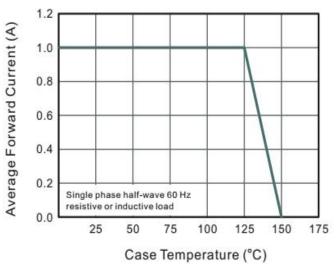
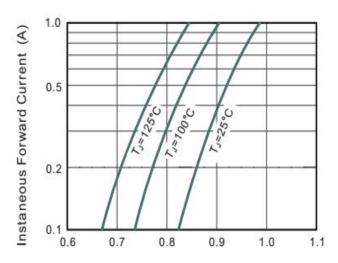
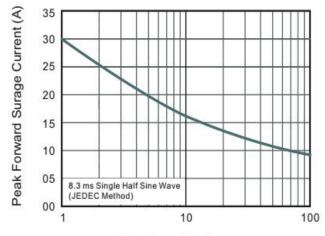
> Approx. Weight: 0.055g /0.002oz

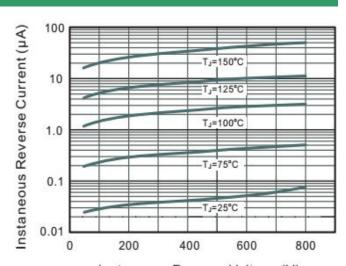
Absolute maximum rating@25℃

Parameter	Symbol	M1	M2	M3	M4	M5	M6	M7	Units
Maximum Repetitive Peak Reverse Voltage	V _{RRM}	50	100	200	400	600	800	1000	V
Maximum RMS voltage	V _{RMS}	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current	I _{F(AV)}				1				А
Peak Forward Surge Current 8.3 ms Single Half Sine Wave Superimposed on Rated Load	I _{FSM}	30					A		
Maximum Instantaneous Forward Voltage at 1A	VF	1.1					V		
Maximum DC Reverse Current Ta = 25 °C at Rated DC Blocking Voltage Ta =125 °C	I _R	5 50					μА		
Typical Junction Capacitance (1)	C _j	15					pF		
Typical Thermal Resistance (2)	R _{0JA}	75					°C /W		
Operating and Storage Temperature Range	T_j , T_{stg}	-55 ~ +150					°C		

- (1) Measured at 1 MHz and applied reverse voltage of 4 V D.C
- (2) P.C.B mounted with 1.0×1.0"(2.54*2.54 cm) copper pad areas.

Typical Characteristics

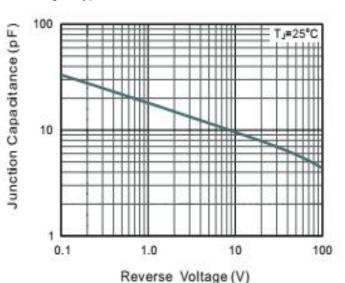
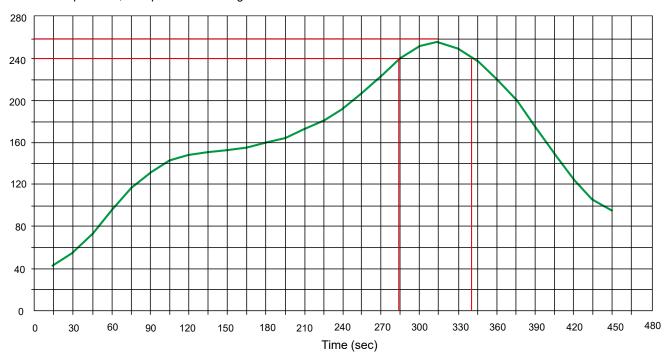




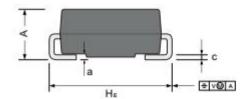

Fig.1 Forward Current Derating Curve

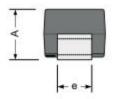
Instaneous Forward Voltage (V)
Fig.3 Typical Forward Characteristic

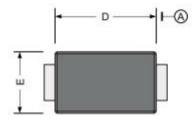
Number of Cycles
Fig.5 Maximum Non-Repetitive Peak
Forward Surage Current

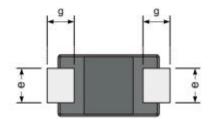
Instaneous Reverse Voltage (V)
Fig.2 Typical Instaneous Reverse Characteristics

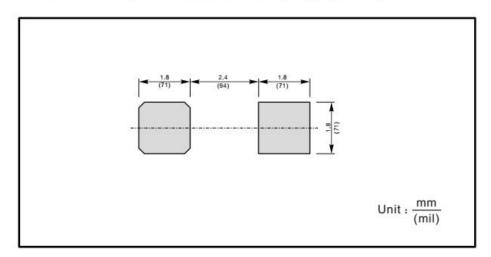

Fig.4 Typical Junction Capacitance


Solder Reflow Recommendation


Peak Temp=257℃, Ramp Rate=0.802deg. ℃/sec



Product dimension (SMA)



UNIT	0 8	Α	D	E	HE	С	е	g	а
mm -	max	2.2	4.5	2.7	5.2	0.31	1.6	1.5	0.3
	min	1.9	4.0	2.3	4.7	0.15	1.3	0.9	
mil	max	87	181	106	205	12	63	59	12
	min	75	157	91	185	6	51	35	

The recommended mounting pad size

Marking information

Device	Marking
M1	M1
M2	M2
M3	M3
M4	M4
M5	M5
M6	M6
M7	M7

Ordering information

Device	Package	Reel	Shipping
M1-M7	SMA (Pb-Free)	7"	2000/ Tape & Reel
M1-M7	SMA (Pb-Free)	13"	5000/ Tape & Reel

IMPORTANT NOTICE

and Prisemi® are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular assume any liability arising out of the application or use of any purpose, nor does Prisemi product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.